HEART-VIT: Hessian-Guided Efficient Dynamic Attention and Token Pruning in Vision Transformer
By: Mohammad Helal Uddin, Liam Seymour, Sabur Baidya
Vision Transformers (ViTs) deliver state-of-the-art accuracy but their quadratic attention cost and redundant computations severely hinder deployment on latency and resource-constrained platforms. Existing pruning approaches treat either tokens or heads in isolation, relying on heuristics or first-order signals, which often sacrifice accuracy or fail to generalize across inputs. We introduce HEART-ViT, a Hessian-guided efficient dynamic attention and token pruning framework for vision transformers, which to the best of our knowledge is the first unified, second-order, input-adaptive framework for ViT optimization. HEART-ViT estimates curvature-weighted sensitivities of both tokens and attention heads using efficient Hessian-vector products, enabling principled pruning decisions under explicit loss budgets.This dual-view sensitivity reveals an important structural insight: token pruning dominates computational savings, while head pruning provides fine-grained redundancy removal, and their combination achieves a superior trade-off. On ImageNet-100 and ImageNet-1K with ViT-B/16 and DeiT-B/16, HEART-ViT achieves up to 49.4 percent FLOPs reduction, 36 percent lower latency, and 46 percent higher throughput, while consistently matching or even surpassing baseline accuracy after fine-tuning, for example 4.7 percent recovery at 40 percent token pruning. Beyond theoretical benchmarks, we deploy HEART-ViT on different edge devices such as AGX Orin, demonstrating that our reductions in FLOPs and latency translate directly into real-world gains in inference speed and energy efficiency. HEART-ViT bridges the gap between theory and practice, delivering the first unified, curvature-driven pruning framework that is both accuracy-preserving and edge-efficient.
Similar Papers
SPOT: Sparsification with Attention Dynamics via Token Relevance in Vision Transformers
CV and Pattern Recognition
Makes computer vision faster by removing unneeded parts.
Rethinking Vision Transformer for Large-Scale Fine-Grained Image Retrieval
Multimedia
Finds exact picture matches faster and better.
CascadedViT: Cascaded Chunk-FeedForward and Cascaded Group Attention Vision Transformer
CV and Pattern Recognition
Makes AI see better using less power.