Score: 0

A Covariance-Surrogate Framework for Movable-Antenna Enabled Anti-Jamming with Unknown Jammers

Published: December 23, 2025 | arXiv ID: 2512.20380v1

By: Lebin Chen , Ming-Min Zhao , Qingqing Wu and more

In this paper, we investigate a movable antenna (MA) enabled anti-jamming optimization problem, where a legitimate uplink system is exposed to multiple jammers with unknown jamming channels. To enhance the anti-jamming capability of the considered system, an MA array is deployed at the receiver, and the antenna positions and the minimum-variance distortionless-response (MVDR) receive beamformer are jointly optimized to maximize the output signal-to-interference-plus-noise ratio (SINR). The main challenge arises from the fact that the interference covariance matrix is unknown and nonlinearly dependent on the antenna positions. To overcome these issues, we propose a surrogate objective by replacing the unknown covariance with the sample covariance evaluated at the current antenna position anchor. Under a two-timescale framework, the surrogate objective is updated once per block (contains multiple snapshots) at the current anchor position, while the MVDR beamformer is adapted on a per-snapshot basis. We establish a local bound on the discrepancy between the surrogate and the true objective by leveraging matrix concentration inequalities, and further prove that a natural historical-averaging surrogate suffers from a non-vanishing geometric bias. Building on these insights, we develop a low-complexity projected trust-region (TR) surrogate optimization (PTRSO) algorithm that maintains the locality of each iteration via TR constraints and enforces feasibility through projection, which is guaranteed to converge to a stationary point near the anchor. Numerical results verify the effectiveness and robustness of the proposed PTRSO algorithm, which consistently achieves higher output SINR than existing baselines.

Category
Electrical Engineering and Systems Science:
Signal Processing