BRIDGE: Budget-aware Reasoning via Intermediate Distillation with Guided Examples
By: Xuan-An Le, Minh-Nam Tran, Son Nguyen
Distilling knowledge from large proprietary models (e.g., GPT-4) to tiny deployable models (less than 1B parameters) faces a critical capacity-budget trap: the 1000x capacity gap between teachers and students prevents effective direct transfer, while API costs prohibit extensive data collection. We introduce BRIDGE (Budget-Aware Reasoning via Intermediate Distillation), a two-phase framework that resolves these constraints through strategic intermediation and budget asymmetry. In Phase 1, a mid-sized Teacher Assistant (TA; e.g., about 7B) learns from the black-box teacher on a strictly limited subset of data (e.g., 3-5%), selected via a zero-API-cost pipeline that balances entropic difficulty and semantic diversity using only local TA inference. In Phase 2, we exploit this asymmetry-teacher queries are expensive, whereas TA inference is free to amplify supervision: the refined TA generates synthetic rationales for the full dataset to train the tiny student. Crucially, we apply an instruction-tuning curriculum to establish behavioral alignment in the tiny student before transferring reasoning. Our theoretical analysis shows that BRIDGE yields tighter generalization bounds than direct distillation when data is abundant. Experiments across medical, legal, and financial benchmarks demonstrate consistent improvements: BRIDGE delivers student performance gains of 28-41%, closing the capability gap with proprietary teachers by 12-16% while using 10x fewer teacher queries. Notably, BRIDGE defies the conventional cost-performance frontier, surpassing direct distillation baselines that use 100% of the budget while consuming only 5% of the resources.
Similar Papers
BARD: budget-aware reasoning distillation
Computation and Language
Teaches AI to think clearly, but faster.
From Reasoning LLMs to BERT: A Two-Stage Distillation Framework for Search Relevance
Information Retrieval
Makes online shopping search faster and smarter.
Beyond Scaling Law: A Data-Efficient Distillation Framework for Reasoning
Machine Learning (CS)
Teaches computers to think better with less data.