Shifted Partial Derivative Polynomial Rank and Codimension
By: Darren J. Edwards
Shifted partial derivative (SPD) methods are a central algebraic tool for circuit lower bounds, measuring the dimension of spaces of shifted derivatives of a polynomial. We develop the Shifted Partial Derivative Polynomial (SPDP) framework, packaging SPD into an explicit coefficient-matrix formalism. This turns shifted-derivative spans into concrete linear-algebraic objects and yields two dual measures: SPDP rank and SPDP codimension. We define the SPDP generating family, its span, and the SPDP matrix M_{k,l}(p) inside a fixed ambient coefficient space determined by the (k,l) regime, so rank is canonical and codimension is a deficit from ambient fullness. We prove structural properties needed for reuse: monotonicity in the shift/derivative parameters (with careful scoping for |S|=k versus |S|<=k conventions), invariance under admissible variable symmetries and basis changes, and robustness across standard Boolean/multilinear embeddings. We then give generic width-to-rank upper-bound templates for local circuit models via profile counting, separating the model-agnostic SPDP toolkit from additional compiled refinements used elsewhere. We illustrate the codimension viewpoint on representative examples.
Similar Papers
New results in canonical polyadic decomposition over finite fields
Computational Complexity
Proves if computers can multiply numbers faster.
Adjoint and duality for rank-metric codes in a skew polynomial framework
Information Theory
Creates new ways to send secret messages securely.
Skew polynomial representations of matrix algebras and applications to coding theory
Information Theory
Creates better ways to store and send information.