Score: 0

Input-Adaptive Visual Preprocessing for Efficient Fast Vision-Language Model Inference

Published: December 23, 2025 | arXiv ID: 2512.20839v1

By: Putu Indah Githa Cahyani, Komang David Dananjaya Suartana, Novanto Yudistira

Vision-Language Models (VLMs) have demonstrated strong performance on multimodal reasoning tasks, but their deployment remains challenging due to high inference latency and computational cost, particularly when processing high-resolution visual inputs. While recent architectures such as FastVLM improve efficiency through optimized vision encoders, existing pipelines still rely on static visual preprocessing, leading to redundant computation for visually simple inputs. In this work, we propose an adaptive visual preprocessing method that dynamically adjusts input resolution and spatial coverage based on image content characteristics. The proposed approach combines content-aware image analysis, adaptive resolution selection, and content-aware cropping to reduce visual redundancy prior to vision encoding. Importantly, the method is integrated with FastVLM without modifying its architecture or requiring retraining. We evaluate the proposed method on a subset of the DocVQA dataset in an inference-only setting, focusing on efficiency-oriented metrics. Experimental results show that adaptive preprocessing reduces per-image inference time by over 50\%, lowers mean full generation time, and achieves a consistent reduction of more than 55\% in visual token count compared to the baseline pipeline. These findings demonstrate that input-aware preprocessing is an effective and lightweight strategy for improving deployment-oriented efficiency of vision-language models. To facilitate reproducibility, our implementation is provided as a fork of the FastVLM repository, incorporating the files for the proposed method, and is available at https://github.com/kmdavidds/mlfastlm.

Category
Computer Science:
CV and Pattern Recognition