DiEC: Diffusion Embedded Clustering
By: Haidong Hu
Deep clustering hinges on learning representations that are inherently clusterable. However, using a single encoder to produce a fixed embedding ignores the representation trajectory formed by a pretrained diffusion model across network hierarchies and noise timesteps, where clusterability varies substantially. We propose DiEC (Diffusion Embedded Clustering), which performs unsupervised clustering by directly reading internal activations from a pretrained diffusion U-Net. DiEC formulates representation selection as a two-dimensional search over layer x timestep, and exploits a weak-coupling property to decompose it into two stages. Specifically, we first fix the U-Net bottleneck layer as the Clustering-friendly Middle Layer (CML), and then use Optimal Timestep Search (OTS) to identify the clustering-optimal timestep (t*). During training, we extract bottleneck features at the fixed t* and obtain clustering representations via a lightweight residual mapping. We optimize a DEC-style KL self-training objective, augmented with adaptive graph regularization and entropy regularization to strengthen cluster structures. In parallel, we introduce a denoising-consistency branch at random timesteps to stabilize the representations and preserve generative consistency. Experiments show that DiEC achieves competitive clustering performance on multiple standard benchmarks.
Similar Papers
Automated Learning of Semantic Embedding Representations for Diffusion Models
Machine Learning (CS)
Makes computers understand pictures better for learning.
Encoder-Decoder Diffusion Language Models for Efficient Training and Inference
Machine Learning (CS)
Makes AI write and understand faster.
SDEC: Semantic Deep Embedded Clustering
Computation and Language
Groups similar texts better, finding hidden meanings.