Score: 0

SLIDE: Simultaneous Model Downloading and Inference at the Wireless Network Edge

Published: December 24, 2025 | arXiv ID: 2512.20946v1

By: Guanqiao Qu , Tao Li , Qian Chen and more

To support on-device inference, the next-generation mobile networks are expected to support real-time model downloading services to mobile users. However, powerful AI models typically have large model sizes, resulting in excessive end-to-end (E2E) downloading-and-inference (DAI) latency. To address this issue, we propose a simultaneous model downloading and inference (SLIDE) framework, which allows users to perform inference with downloaded layers while simultaneously receiving the remaining layers of the model. To this end, we formulate a task throughput maximization problem by jointly optimizing model provisioning, spectrum bandwidth allocation, and computing resource allocation for multi-user downlink systems. Unlike traditional DAI frameworks, SLIDE introduces recursive dependencies across layers, where inference latency depends recursively on the downloading bandwidth and computing resource allocation for each of the preceding layers. To solve this challenging problem, we design an efficient algorithm that acquires the optimal solution with polynomial-time complexity. Simulation results demonstrate that the proposed SLIDE framework significantly improves task throughput under latency and communication resource constraints compared with the conventional model downloading schemes.

Category
Computer Science:
Networking and Internet Architecture