Automatic Replication of LLM Mistakes in Medical Conversations
By: Oleksii Proniakin , Diego Fajardo , Ruslan Nazarenko and more
Potential Business Impact:
Finds AI mistakes in doctor-patient talks.
Large language models (LLMs) are increasingly evaluated in clinical settings using multi-dimensional rubrics which quantify reasoning quality, safety, and patient-centeredness. Yet, replicating specific mistakes in other LLM models is not straightforward and often requires manual effort. We introduce MedMistake, an automatic pipeline that extracts mistakes LLMs make in patient-doctor conversations and converts them into a benchmark of single-shot QA pairs. Our pipeline (1) creates complex, conversational data between an LLM patient and LLM doctor, (2) runs an evaluation with a committee of 2 LLM judges across a variety of dimensions and (3) creates simplified single-shot QA scenarios from those mistakes. We release MedMistake-All, a dataset of 3,390 single-shot QA pairs where GPT-5 and Gemini 2.5 Pro are currently failing to answer correctly, as judged by two LLM judges. We used medical experts to validate a subset of 211/3390 questions (MedMistake-Bench), which we used to run a final evaluation of 12 frontier LLMs: Claude Opus 4.5, Claude Sonnet 4.5, DeepSeek-Chat, Gemini 2.5 Pro, Gemini 3 Pro, GPT-4o, GPT-5, GPT-5.1, GPT-5.2, Grok 4, Grok 4.1, Mistral Large. We found that GPT models, Claude and Grok obtained the best performance on MedMistake-Bench. We release both the doctor-validated benchmark (MedMistake-Bench), as well as the full dataset (MedMistake-All) at https://huggingface.co/datasets/TheLumos/MedicalMistakeBenchmark.
Similar Papers
Generalist Large Language Models Outperform Clinical Tools on Medical Benchmarks
Computation and Language
New AI helps doctors more than old AI.
Large language models provide unsafe answers to patient-posed medical questions
Computation and Language
Tests show some AI chatbots give bad medical advice.
Asking the Right Questions: Benchmarking Large Language Models in the Development of Clinical Consultation Templates
Computation and Language
Helps doctors write patient notes faster.