Score: 0

Blurb-Refined Inference from Crowdsourced Book Reviews using Hierarchical Genre Mining with Dual-Path Graph Convolutions

Published: December 24, 2025 | arXiv ID: 2512.21076v1

By: Suraj Kumar , Utsav Kumar Nareti , Soumi Chattopadhyay and more

Accurate book genre classification is fundamental to digital library organization, content discovery, and personalized recommendation. Existing approaches typically model genre prediction as a flat, single-label task, ignoring hierarchical genre structure and relying heavily on noisy, subjective user reviews, which often degrade classification reliability. We propose HiGeMine, a two-phase hierarchical genre mining framework that robustly integrates user reviews with authoritative book blurbs. In the first phase, HiGeMine employs a zero-shot semantic alignment strategy to filter reviews, retaining only those semantically consistent with the corresponding blurb, thereby mitigating noise, bias, and irrelevance. In the second phase, we introduce a dual-path, two-level graph-based classification architecture: a coarse-grained Level-1 binary classifier distinguishes fiction from non-fiction, followed by Level-2 multi-label classifiers for fine-grained genre prediction. Inter-genre dependencies are explicitly modeled using a label co-occurrence graph, while contextual representations are derived from pretrained language models applied to the filtered textual content. To facilitate systematic evaluation, we curate a new hierarchical book genre dataset. Extensive experiments demonstrate that HiGeMine consistently outperformed strong baselines across hierarchical genre classification tasks. The proposed framework offers a principled and effective solution for leveraging both structured and unstructured textual data in hierarchical book genre analysis.

Category
Computer Science:
Information Retrieval