TICON: A Slide-Level Tile Contextualizer for Histopathology Representation Learning
By: Varun Belagali , Saarthak Kapse , Pierre Marza and more
Potential Business Impact:
Helps doctors see diseases better in body pictures.
The interpretation of small tiles in large whole slide images (WSI) often needs a larger image context. We introduce TICON, a transformer-based tile representation contextualizer that produces rich, contextualized embeddings for ''any'' application in computational pathology. Standard tile encoder-based pipelines, which extract embeddings of tiles stripped from their context, fail to model the rich slide-level information essential for both local and global tasks. Furthermore, different tile-encoders excel at different downstream tasks. Therefore, a unified model is needed to contextualize embeddings derived from ''any'' tile-level foundation model. TICON addresses this need with a single, shared encoder, pretrained using a masked modeling objective to simultaneously unify and contextualize representations from diverse tile-level pathology foundation models. Our experiments demonstrate that TICON-contextualized embeddings significantly improve performance across many different tasks, establishing new state-of-the-art results on tile-level benchmarks (i.e., HEST-Bench, THUNDER, CATCH) and slide-level benchmarks (i.e., Patho-Bench). Finally, we pretrain an aggregator on TICON to form a slide-level foundation model, using only 11K WSIs, outperforming SoTA slide-level foundation models pretrained with up to 350K WSIs.
Similar Papers
LoC-Path: Learning to Compress for Pathology Multimodal Large Language Models
CV and Pattern Recognition
Helps doctors find diseases on slides faster.
GNN-ViTCap: GNN-Enhanced Multiple Instance Learning with Vision Transformers for Whole Slide Image Classification and Captioning
CV and Pattern Recognition
Helps doctors diagnose cancer from tiny pictures.
Histology-informed tiling of whole tissue sections improves the interpretability and predictability of cancer relapse and genetic alterations
CV and Pattern Recognition
Finds cancer patterns in tissue pictures.