Score: 0

The AI Committee: A Multi-Agent Framework for Automated Validation and Remediation of Web-Sourced Data

Published: December 25, 2025 | arXiv ID: 2512.21481v1

By: Sunith Vallabhaneni, Thomas Berkane, Maimuna Majumder

Many research areas rely on data from the web to gain insights and test their methods. However, collecting comprehensive research datasets often demands manually reviewing many web pages to identify and record relevant data points, which is labor-intensive and susceptible to error. While the emergence of large language models (LLM)-powered web agents has begun to automate parts of this process, they often struggle to ensure the validity of the data they collect. Indeed, these agents exhibit several recurring failure modes - including hallucinating or omitting values, misinterpreting page semantics, and failing to detect invalid information - which are subtle and difficult to detect and correct manually. To address this, we introduce the AI Committee, a novel model-agnostic multi-agent system that automates the process of validating and remediating web-sourced datasets. Each agent is specialized in a distinct task in the data quality assurance pipeline, from source scrutiny and fact-checking to data remediation and integrity validation. The AI Committee leverages various LLM capabilities - including in-context learning for dataset adaptation, chain-of-thought reasoning for complex semantic validation, and a self-correction loop for data remediation - all without task-specific training. We demonstrate the effectiveness of our system by applying it to three real-world datasets, showing that it generalizes across LLMs and significantly outperforms baseline approaches, achieving data completeness up to 78.7% and precision up to 100%. We additionally conduct an ablation study demonstrating the contribution of each agent to the Committee's performance. This work is released as an open-source tool for the research community.

Category
Computer Science:
Multiagent Systems