Fixed-Threshold Evaluation of a Hybrid CNN-ViT for AI-Generated Image Detection Across Photos and Art
By: Md Ashik Khan, Arafat Alam Jion
Potential Business Impact:
Detects fake pictures even after editing.
AI image generators create both photorealistic images and stylized art, necessitating robust detectors that maintain performance under common post-processing transformations (JPEG compression, blur, downscaling). Existing methods optimize single metrics without addressing deployment-critical factors such as operating point selection and fixed-threshold robustness. This work addresses misleading robustness estimates by introducing a fixed-threshold evaluation protocol that holds decision thresholds, selected once on clean validation data, fixed across all post-processing transformations. Traditional methods retune thresholds per condition, artificially inflating robustness estimates and masking deployment failures. We report deployment-relevant performance at three operating points (Low-FPR, ROC-optimal, Best-F1) under systematic degradation testing using a lightweight CNN-ViT hybrid with gated fusion and optional frequency enhancement. Our evaluation exposes a statistically validated forensic-semantic spectrum: frequency-aided CNNs excel on pristine photos but collapse under compression (93.33% to 61.49%), whereas ViTs degrade minimally (92.86% to 88.36%) through robust semantic pattern recognition. Multi-seed experiments demonstrate that all architectures achieve 15% higher AUROC on artistic content (0.901-0.907) versus photorealistic images (0.747-0.759), confirming that semantic patterns provide fundamentally more reliable detection cues than forensic artifacts. Our hybrid approach achieves balanced cross-domain performance: 91.4% accuracy on tiny-genimage photos, 89.7% on AiArtData art/graphics, and 98.3% (competitive) on CIFAKE. Fixed-threshold evaluation eliminates retuning inflation, reveals genuine robustness gaps, and yields actionable deployment guidance: prefer CNNs for clean photo verification, ViTs for compressed content, and hybrids for art/graphics screening.
Similar Papers
Edge-Enhanced Vision Transformer Framework for Accurate AI-Generated Image Detection
CV and Pattern Recognition
Finds fake pictures made by computers.
Functional Localization Enforced Deep Anomaly Detection Using Fundus Images
CV and Pattern Recognition
Finds eye diseases in pictures better.
A Hybrid Deep Learning and Forensic Approach for Robust Deepfake Detection
CV and Pattern Recognition
Finds fake videos by combining clues.