Score: 1

Residual Prior Diffusion: A Probabilistic Framework Integrating Coarse Latent Priors with Diffusion Models

Published: December 25, 2025 | arXiv ID: 2512.21593v1

By: Takuro Kutsuna

Potential Business Impact:

Makes AI create more detailed and realistic pictures.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

Diffusion models have become a central tool in deep generative modeling, but standard formulations rely on a single network and a single diffusion schedule to transform a simple prior, typically a standard normal distribution, into the target data distribution. As a result, the model must simultaneously represent the global structure of the distribution and its fine-scale local variations, which becomes difficult when these scales are strongly mismatched. This issue arises both in natural images, where coarse manifold-level structure and fine textures coexist, and in low-dimensional distributions with highly concentrated local structure. To address this issue, we propose Residual Prior Diffusion (RPD), a two-stage framework in which a coarse prior model first captures the large-scale structure of the data distribution, and a diffusion model is then trained to represent the residual between the prior and the target data distribution. We formulate RPD as an explicit probabilistic model with a tractable evidence lower bound, whose optimization reduces to the familiar objectives of noise prediction or velocity prediction. We further introduce auxiliary variables that leverage information from the prior model and theoretically analyze how they reduce the difficulty of the prediction problem in RPD. Experiments on synthetic datasets with fine-grained local structure show that standard diffusion models fail to capture local details, whereas RPD accurately captures fine-scale detail while preserving the large-scale structure of the distribution. On natural image generation tasks, RPD achieved generation quality that matched or exceeded that of representative diffusion-based baselines and it maintained strong performance even with a small number of inference steps.

Repos / Data Links

Page Count
40 pages

Category
Statistics:
Machine Learning (Stat)