Score: 0

Near-Field Communication with Massive Movable Antennas: An Electrostatic Equilibrium Perspective

Published: December 25, 2025 | arXiv ID: 2512.21660v1

By: Shicong Liu , Xianghao Yu , Shenghui Song and more

Recent advancements in large-scale position-reconfigurable antennas have opened up new dimensions to effectively utilize the spatial degrees of freedom (DoFs) of wireless channels. However, the deployment of existing antenna placement schemes is primarily hindered by their limited scalability and frequently overlooked near-field effects in large-scale antenna systems. In this paper, we propose a novel antenna placement approach tailored for near-field massive multiple-input multiple-output systems, which effectively exploits the spatial DoFs to enhance spectral efficiency. For that purpose, we first reformulate the antenna placement problem in the angular domain, resulting in a weighted Fekete problem. We then derive the optimality condition and reveal that the {optimal} antenna placement is in principle an electrostatic equilibrium problem. To further reduce the computational complexity of numerical optimization, we propose an ordinary differential equation (ODE)-based framework to efficiently solve the equilibrium problem. In particular, the optimal antenna positions are characterized by the roots of the polynomial solutions to specific ODEs in the normalized angular domain. By simply adopting a two-step eigenvalue decomposition (EVD) approach, the optimal antenna positions can be efficiently obtained. Furthermore, we perform an asymptotic analysis when the antenna size tends to infinity, which yields a closed-form solution. Simulation results demonstrate that the proposed scheme efficiently harnesses the spatial DoFs of near-field channels with prominent gains in spectral efficiency and maintains robustness against system parameter mismatches. In addition, the derived asymptotic closed-form {solution} closely approaches the theoretical optimum across a wide range of practical scenarios.

Category
Computer Science:
Information Theory