Score: 0

Dictionary-Transform Generative Adversarial Networks

Published: December 25, 2025 | arXiv ID: 2512.21677v1

By: Angshul Majumdar

Generative adversarial networks (GANs) are widely used for distribution learning, yet their classical formulations remain theoretically fragile, with ill-posed objectives, unstable training dynamics, and limited interpretability. In this work, we introduce \emph{Dictionary-Transform Generative Adversarial Networks} (DT-GAN), a fully model-based adversarial framework in which the generator is a sparse synthesis dictionary and the discriminator is an analysis transform acting as an energy model. By restricting both players to linear operators with explicit constraints, DT-GAN departs fundamentally from neural GAN architectures and admits rigorous theoretical analysis. We show that the DT-GAN adversarial game is well posed and admits at least one Nash equilibrium. Under a sparse generative model, equilibrium solutions are provably identifiable up to standard permutation and sign ambiguities and exhibit a precise geometric alignment between synthesis and analysis operators. We further establish finite-sample stability and consistency of empirical equilibria, demonstrating that DT-GAN training converges reliably under standard sampling assumptions and remains robust in heavy-tailed regimes. Experiments on mixture-structured synthetic data validate the theoretical predictions, showing that DT-GAN consistently recovers underlying structure and exhibits stable behavior under identical optimization budgets where a standard GAN degrades. DT-GAN is not proposed as a universal replacement for neural GANs, but as a principled adversarial alternative for data distributions that admit sparse synthesis structure. The results demonstrate that adversarial learning can be made interpretable, stable, and provably correct when grounded in classical sparse modeling.

Category
Computer Science:
Machine Learning (CS)