RAPTOR: Real-Time High-Resolution UAV Video Prediction with Efficient Video Attention
By: Zhan Chen , Zile Guo , Enze Zhu and more
Potential Business Impact:
Drones see future to fly safer.
Video prediction is plagued by a fundamental trilemma: achieving high-resolution and perceptual quality typically comes at the cost of real-time speed, hindering its use in latency-critical applications. This challenge is most acute for autonomous UAVs in dense urban environments, where foreseeing events from high-resolution imagery is non-negotiable for safety. Existing methods, reliant on iterative generation (diffusion, autoregressive models) or quadratic-complexity attention, fail to meet these stringent demands on edge hardware. To break this long-standing trade-off, we introduce RAPTOR, a video prediction architecture that achieves real-time, high-resolution performance. RAPTOR's single-pass design avoids the error accumulation and latency of iterative approaches. Its core innovation is Efficient Video Attention (EVA), a novel translator module that factorizes spatiotemporal modeling. Instead of processing flattened spacetime tokens with $O((ST)^2)$ or $O(ST)$ complexity, EVA alternates operations along the spatial (S) and temporal (T) axes. This factorization reduces the time complexity to $O(S + T)$ and memory complexity to $O(max(S, T))$, enabling global context modeling at $512^2$ resolution and beyond, operating directly on dense feature maps with a patch-free design. Complementing this architecture is a 3-stage training curriculum that progressively refines predictions from coarse structure to sharp, temporally coherent details. Experiments show RAPTOR is the first predictor to exceed 30 FPS on a Jetson AGX Orin for $512^2$ video, setting a new state-of-the-art on UAVid, KTH, and a custom high-resolution dataset in PSNR, SSIM, and LPIPS. Critically, RAPTOR boosts the mission success rate in a real-world UAV navigation task by 18/%, paving the way for safer and more anticipatory embodied agents.
Similar Papers
A Multimodal Transformer Approach for UAV Detection and Aerial Object Recognition Using Radar, Audio, and Video Data
CV and Pattern Recognition
Spots drones using many senses at once.
Predictive Uncertainty for Runtime Assurance of a Real-Time Computer Vision-Based Landing System
CV and Pattern Recognition
Helps planes land safely using cameras.
MAVR-Net: Robust Multi-View Learning for MAV Action Recognition with Cross-View Attention
CV and Pattern Recognition
Helps drones understand each other's movements.