Score: 1

Modified TSception for Analyzing Driver Drowsiness and Mental Workload from EEG

Published: December 25, 2025 | arXiv ID: 2512.21747v1

By: Gourav Siddhad , Anurag Singh , Rajkumar Saini and more

Potential Business Impact:

Detects sleepy drivers using brain waves.

Business Areas:
Intelligent Systems Artificial Intelligence, Data and Analytics, Science and Engineering

Driver drowsiness remains a primary cause of traffic accidents, necessitating the development of real-time, reliable detection systems to ensure road safety. This study presents a Modified TSception architecture designed for the robust assessment of driver fatigue using Electroencephalography (EEG). The model introduces a novel hierarchical architecture that surpasses the original TSception by implementing a five-layer temporal refinement strategy to capture multi-scale brain dynamics. A key innovation is the use of Adaptive Average Pooling, which provides the structural flexibility to handle varying EEG input dimensions, and a two - stage fusion mechanism that optimizes the integration of spatiotemporal features for improved stability. When evaluated on the SEED-VIG dataset and compared against established methods - including SVM, Transformer, EEGNet, ConvNeXt, LMDA-Net, and the original TSception - the Modified TSception achieves a comparable accuracy of 83.46% (vs. 83.15% for the original). Critically, the proposed model exhibits a substantially reduced confidence interval (0.24 vs. 0.36), signifying a marked improvement in performance stability. Furthermore, the architecture's generalizability is validated on the STEW mental workload dataset, where it achieves state-of-the-art results with 95.93% and 95.35% accuracy for 2-class and 3-class classification, respectively. These improvements in consistency and cross-task generalizability underscore the effectiveness of the proposed modifications for reliable EEG-based monitoring of drowsiness and mental workload.

Country of Origin
🇮🇳 India

Page Count
8 pages

Category
Computer Science:
Human-Computer Interaction