Score: 1

Inference-based GAN Video Generation

Published: December 25, 2025 | arXiv ID: 2512.21776v1

By: Jingbo Yang, Adrian G. Bors

Potential Business Impact:

Makes computers create super long, smooth videos.

Business Areas:
Video Editing Content and Publishing, Media and Entertainment, Video

Video generation has seen remarkable progresses thanks to advancements in generative deep learning. Generated videos should not only display coherent and continuous movement but also meaningful movement in successions of scenes. Generating models such as Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs) and more recently Diffusion Networks have been used for generating short video sequences, usually of up to 16 frames. In this paper, we first propose a new type of video generator by enabling adversarial-based unconditional video generators with a variational encoder, akin to a VAE-GAN hybrid structure, in order to enable the generation process with inference capabilities. The proposed model, as in other video deep learning-based processing frameworks, incorporates two processing branches, one for content and another for movement. However, existing models struggle with the temporal scaling of the generated videos. In classical approaches when aiming to increase the generated video length, the resulting video quality degrades, particularly when considering generating significantly long sequences. To overcome this limitation, our research study extends the initially proposed VAE-GAN video generation model by employing a novel, memory-efficient approach to generate long videos composed of hundreds or thousands of frames ensuring their temporal continuity, consistency and dynamics. Our approach leverages a Markov chain framework with a recall mechanism, with each state representing a VAE-GAN short-length video generator. This setup allows for the sequential connection of generated video sub-sequences, enabling temporal dependencies, resulting in meaningful long video sequences.

Country of Origin
🇬🇧 United Kingdom

Repos / Data Links

Page Count
25 pages

Category
Computer Science:
CV and Pattern Recognition