Score: 0

Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model

Published: December 26, 2025 | arXiv ID: 2512.21917v1

By: Nathan Kallus

Aligning large language models to preference data is commonly implemented by assuming a known link function between the distribution of observed preferences and the unobserved rewards (e.g., a logistic link as in Bradley-Terry). If the link is wrong, however, inferred rewards can be biased and policies be misaligned. We study policy alignment to preferences under an unknown and unrestricted link. We consider an $f$-divergence-constrained reward maximization problem and show that realizability of the solution in a policy class implies a semiparametric single-index binary choice model, where a scalar-valued index determined by a policy captures the dependence on demonstrations and the rest of the preference distribution is an unrestricted function thereof. Rather than focus on estimation of identifiable finite-dimensional structural parameters in the index as in econometrics, we focus on policy learning, focusing on error to the optimal policy and allowing unidentifiable and nonparametric indices. We develop a variety of policy learners based on profiling the link function, orthogonalizing the link function, and using link-agnostic bipartite ranking objectives. We analyze these and provide finite-sample policy error bounds that depend on generic functional complexity measures of the index class. We further consider practical implementations using first-order optimization suited to neural networks and batched data. The resulting methods are robust to unknown preference noise distribution and scale, while preserving the direct optimization of policies without explicitly fitting rewards.

Category
Computer Science:
Machine Learning (CS)