Score: 0

Scaling Adversarial Training via Data Selection

Published: December 26, 2025 | arXiv ID: 2512.22069v1

By: Youran Ye, Dejin Wang, Ajinkya Bhandare

Projected Gradient Descent (PGD) is a strong and widely used first-order adversarial attack, yet its computational cost scales poorly, as all training samples undergo identical iterative inner-loop optimization despite contributing unequally to robustness. Motivated by this inefficiency, we propose \emph{Selective Adversarial Training}, which perturbs only a subset of critical samples in each minibatch. Specifically, we introduce two principled selection criteria: (1) margin-based sampling, which prioritizes samples near the decision boundary, and (2) gradient-matching sampling, which selects samples whose gradients align with the dominant batch optimization direction. Adversarial examples are generated only for the selected subset, while the remaining samples are trained cleanly using a mixed objective. Experiments on MNIST and CIFAR-10 show that the proposed methods achieve robustness comparable to, or even exceeding, full PGD adversarial training, while reducing adversarial computation by up to $50\%$, demonstrating that informed sample selection is sufficient for scalable adversarial robustness.

Category
Computer Science:
Machine Learning (CS)