Score: 0

On Fibonacci Ensembles: An Alternative Approach to Ensemble Learning Inspired by the Timeless Architecture of the Golden Ratio

Published: December 25, 2025 | arXiv ID: 2512.22284v1

By: Ernest Fokoué

Nature rarely reveals her secrets bluntly, yet in the Fibonacci sequence she grants us a glimpse of her quiet architecture of growth, harmony, and recursive stability \citep{Koshy2001Fibonacci, Livio2002GoldenRatio}. From spiral galaxies to the unfolding of leaves, this humble sequence reflects a universal grammar of balance. In this work, we introduce \emph{Fibonacci Ensembles}, a mathematically principled yet philosophically inspired framework for ensemble learning that complements and extends classical aggregation schemes such as bagging, boosting, and random forests \citep{Breiman1996Bagging, Breiman2001RandomForests, Friedman2001GBM, Zhou2012Ensemble, HastieTibshiraniFriedman2009ESL}. Two intertwined formulations unfold: (1) the use of normalized Fibonacci weights -- tempered through orthogonalization and Rao--Blackwell optimization -- to achieve systematic variance reduction among base learners, and (2) a second-order recursive ensemble dynamic that mirrors the Fibonacci flow itself, enriching representational depth beyond classical boosting. The resulting methodology is at once rigorous and poetic: a reminder that learning systems flourish when guided by the same intrinsic harmonies that shape the natural world. Through controlled one-dimensional regression experiments using both random Fourier feature ensembles \citep{RahimiRecht2007RFF} and polynomial ensembles, we exhibit regimes in which Fibonacci weighting matches or improves upon uniform averaging and interacts in a principled way with orthogonal Rao--Blackwellization. These findings suggest that Fibonacci ensembles form a natural and interpretable design point within the broader theory of ensemble learning.

Category
Statistics:
Machine Learning (Stat)