On Fibonacci Ensembles: An Alternative Approach to Ensemble Learning Inspired by the Timeless Architecture of the Golden Ratio
By: Ernest Fokoué
Nature rarely reveals her secrets bluntly, yet in the Fibonacci sequence she grants us a glimpse of her quiet architecture of growth, harmony, and recursive stability \citep{Koshy2001Fibonacci, Livio2002GoldenRatio}. From spiral galaxies to the unfolding of leaves, this humble sequence reflects a universal grammar of balance. In this work, we introduce \emph{Fibonacci Ensembles}, a mathematically principled yet philosophically inspired framework for ensemble learning that complements and extends classical aggregation schemes such as bagging, boosting, and random forests \citep{Breiman1996Bagging, Breiman2001RandomForests, Friedman2001GBM, Zhou2012Ensemble, HastieTibshiraniFriedman2009ESL}. Two intertwined formulations unfold: (1) the use of normalized Fibonacci weights -- tempered through orthogonalization and Rao--Blackwell optimization -- to achieve systematic variance reduction among base learners, and (2) a second-order recursive ensemble dynamic that mirrors the Fibonacci flow itself, enriching representational depth beyond classical boosting. The resulting methodology is at once rigorous and poetic: a reminder that learning systems flourish when guided by the same intrinsic harmonies that shape the natural world. Through controlled one-dimensional regression experiments using both random Fourier feature ensembles \citep{RahimiRecht2007RFF} and polynomial ensembles, we exhibit regimes in which Fibonacci weighting matches or improves upon uniform averaging and interacts in a principled way with orthogonal Rao--Blackwellization. These findings suggest that Fibonacci ensembles form a natural and interpretable design point within the broader theory of ensemble learning.
Similar Papers
Emergence of Structure in Ensembles of Random Neural Networks
Machine Learning (CS)
Makes computers learn better from random guesses.
Golden Ratio Weighting Prevents Model Collapse
Machine Learning (Stat)
Fixes AI models that learn from their own mistakes.
An RKHS Perspective on Tree Ensembles
Machine Learning (Stat)
Explains why computer learning models work so well.