Score: 0

HalluMat: Detecting Hallucinations in LLM-Generated Materials Science Content Through Multi-Stage Verification

Published: December 26, 2025 | arXiv ID: 2512.22396v1

By: Bhanu Prakash Vangala , Sajid Mahmud , Pawan Neupane and more

Artificial Intelligence (AI), particularly Large Language Models (LLMs), is transforming scientific discovery, enabling rapid knowledge generation and hypothesis formulation. However, a critical challenge is hallucination, where LLMs generate factually incorrect or misleading information, compromising research integrity. To address this, we introduce HalluMatData, a benchmark dataset for evaluating hallucination detection methods, factual consistency, and response robustness in AI-generated materials science content. Alongside this, we propose HalluMatDetector, a multi-stage hallucination detection framework that integrates intrinsic verification, multi-source retrieval, contradiction graph analysis, and metric-based assessment to detect and mitigate LLM hallucinations. Our findings reveal that hallucination levels vary significantly across materials science subdomains, with high-entropy queries exhibiting greater factual inconsistencies. By utilizing HalluMatDetector verification pipeline, we reduce hallucination rates by 30% compared to standard LLM outputs. Furthermore, we introduce the Paraphrased Hallucination Consistency Score (PHCS) to quantify inconsistencies in LLM responses across semantically equivalent queries, offering deeper insights into model reliability.

Category
Computer Science:
Artificial Intelligence