Score: 0

Hallucination Detection and Evaluation of Large Language Model

Published: December 27, 2025 | arXiv ID: 2512.22416v1

By: Chenggong Zhang, Haopeng Wang

Potential Business Impact:

Finds fake answers from smart computer programs.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Hallucinations in Large Language Models (LLMs) pose a significant challenge, generating misleading or unverifiable content that undermines trust and reliability. Existing evaluation methods, such as KnowHalu, employ multi-stage verification but suffer from high computational costs. To address this, we integrate the Hughes Hallucination Evaluation Model (HHEM), a lightweight classification-based framework that operates independently of LLM-based judgments, significantly improving efficiency while maintaining high detection accuracy. We conduct a comparative analysis of hallucination detection methods across various LLMs, evaluating True Positive Rate (TPR), True Negative Rate (TNR), and Accuracy on question-answering (QA) and summarization tasks. Our results show that HHEM reduces evaluation time from 8 hours to 10 minutes, while HHEM with non-fabrication checking achieves the highest accuracy \(82.2\%\) and TPR \(78.9\%\). However, HHEM struggles with localized hallucinations in summarization tasks. To address this, we introduce segment-based retrieval, improving detection by verifying smaller text components. Additionally, our cumulative distribution function (CDF) analysis indicates that larger models (7B-9B parameters) generally exhibit fewer hallucinations, while intermediate-sized models show higher instability. These findings highlight the need for structured evaluation frameworks that balance computational efficiency with robust factual validation, enhancing the reliability of LLM-generated content.

Country of Origin
πŸ‡ΊπŸ‡Έ United States

Page Count
8 pages

Category
Computer Science:
Computation and Language