Dream-VL & Dream-VLA: Open Vision-Language and Vision-Language-Action Models with Diffusion Language Model Backbone
By: Jiacheng Ye , Shansan Gong , Jiahui Gao and more
Potential Business Impact:
Helps robots learn new tasks faster.
While autoregressive Large Vision-Language Models (VLMs) have achieved remarkable success, their sequential generation often limits their efficacy in complex visual planning and dynamic robotic control. In this work, we investigate the potential of constructing Vision-Language Models upon diffusion-based large language models (dLLMs) to overcome these limitations. We introduce Dream-VL, an open diffusion-based VLM (dVLM) that achieves state-of-the-art performance among previous dVLMs. Dream-VL is comparable to top-tier AR-based VLMs trained on open data on various benchmarks but exhibits superior potential when applied to visual planning tasks. Building upon Dream-VL, we introduce Dream-VLA, a dLLM-based Vision-Language-Action model (dVLA) developed through continuous pre-training on open robotic datasets. We demonstrate that the natively bidirectional nature of this diffusion backbone serves as a superior foundation for VLA tasks, inherently suited for action chunking and parallel generation, leading to significantly faster convergence in downstream fine-tuning. Dream-VLA achieves top-tier performance of 97.2% average success rate on LIBERO, 71.4% overall average on SimplerEnv-Bridge, and 60.5% overall average on SimplerEnv-Fractal, surpassing leading models such as $π_0$ and GR00T-N1. We also validate that dVLMs surpass AR baselines on downstream tasks across different training objectives. We release both Dream-VL and Dream-VLA to facilitate further research in the community.
Similar Papers
LLaDA-VLA: Vision Language Diffusion Action Models
Robotics
Robots learn to do tasks by watching and reading.
LLaDA-VLA: Vision Language Diffusion Action Models
Robotics
Robots learn to do tasks by watching and reading.
DreamVLA: A Vision-Language-Action Model Dreamed with Comprehensive World Knowledge
CV and Pattern Recognition
Robots learn to do tasks by watching and thinking.