Score: 2

Rethinking Memory Design in SAM-Based Visual Object Tracking

Published: December 27, 2025 | arXiv ID: 2512.22624v1

By: Mohamad Alansari , Muzammal Naseer , Hasan Al Marzouqi and more

Potential Business Impact:

Helps computers remember objects better when they disappear.

Business Areas:
Image Recognition Data and Analytics, Software

\noindent Memory has become the central mechanism enabling robust visual object tracking in modern segmentation-based frameworks. Recent methods built upon Segment Anything Model 2 (SAM2) have demonstrated strong performance by refining how past observations are stored and reused. However, existing approaches address memory limitations in a method-specific manner, leaving the broader design principles of memory in SAM-based tracking poorly understood. Moreover, it remains unclear how these memory mechanisms transfer to stronger, next-generation foundation models such as Segment Anything Model 3 (SAM3). In this work, we present a systematic memory-centric study of SAM-based visual object tracking. We first analyze representative SAM2-based trackers and show that most methods primarily differ in how short-term memory frames are selected, while sharing a common object-centric representation. Building on this insight, we faithfully reimplement these memory mechanisms within the SAM3 framework and conduct large-scale evaluations across ten diverse benchmarks, enabling a controlled analysis of memory design independent of backbone strength. Guided by our empirical findings, we propose a unified hybrid memory framework that explicitly decomposes memory into short-term appearance memory and long-term distractor-resolving memory. This decomposition enables the integration of existing memory policies in a modular and principled manner. Extensive experiments demonstrate that the proposed framework consistently improves robustness under long-term occlusion, complex motion, and distractor-heavy scenarios on both SAM2 and SAM3 backbones. Code is available at: https://github.com/HamadYA/SAM3_Tracking_Zoo. \textbf{This is a preprint. Some results are being finalized and may be updated in a future revision.}

Country of Origin
🇦🇪 United Arab Emirates

Repos / Data Links

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition