Score: 0

A Context-Aware Temporal Modeling through Unified Multi-Scale Temporal Encoding and Hierarchical Sequence Learning for Single-Channel EEG Sleep Staging

Published: December 28, 2025 | arXiv ID: 2512.22976v1

By: Amirali Vakili, Salar Jahanshiri, Armin Salimi-Badr

Automatic sleep staging is a critical task in healthcare due to the global prevalence of sleep disorders. This study focuses on single-channel electroencephalography (EEG), a practical and widely available signal for automatic sleep staging. Existing approaches face challenges such as class imbalance, limited receptive-field modeling, and insufficient interpretability. This work proposes a context-aware and interpretable framework for single-channel EEG sleep staging, with particular emphasis on improving detection of the N1 stage. Many prior models operate as black boxes with stacked layers, lacking clearly defined and interpretable feature extraction roles.The proposed model combines compact multi-scale feature extraction with temporal modeling to capture both local and long-range dependencies. To address data imbalance, especially in the N1 stage, classweighted loss functions and data augmentation are applied. EEG signals are segmented into sub-epoch chunks, and final predictions are obtained by averaging softmax probabilities across chunks, enhancing contextual representation and robustness.The proposed framework achieves an overall accuracy of 89.72% and a macro-average F1-score of 85.46%. Notably, it attains an F1- score of 61.7% for the challenging N1 stage, demonstrating a substantial improvement over previous methods on the SleepEDF datasets. These results indicate that the proposed approach effectively improves sleep staging performance while maintaining interpretability and suitability for real-world clinical applications.

Category
Computer Science:
Machine Learning (CS)