Score: 1

Spatial-aware Symmetric Alignment for Text-guided Medical Image Segmentation

Published: December 28, 2025 | arXiv ID: 2512.22981v1

By: Linglin Liao, Qichuan Geng, Yu Liu

Potential Business Impact:

Helps doctors find tumors using text and pictures.

Business Areas:
Semantic Search Internet Services

Text-guided Medical Image Segmentation has shown considerable promise for medical image segmentation, with rich clinical text serving as an effective supplement for scarce data. However, current methods have two key bottlenecks. On one hand, they struggle to process diagnostic and descriptive texts simultaneously, making it difficult to identify lesions and establish associations with image regions. On the other hand, existing approaches focus on lesions description and fail to capture positional constraints, leading to critical deviations. Specifically, with the text "in the left lower lung", the segmentation results may incorrectly cover both sides of the lung. To address the limitations, we propose the Spatial-aware Symmetric Alignment (SSA) framework to enhance the capacity of referring hybrid medical texts consisting of locational, descriptive, and diagnostic information. Specifically, we propose symmetric optimal transport alignment mechanism to strengthen the associations between image regions and multiple relevant expressions, which establishes bi-directional fine-grained multimodal correspondences. In addition, we devise a composite directional guidance strategy that explicitly introduces spatial constraints in the text by constructing region-level guidance masks. Extensive experiments on public benchmarks demonstrate that SSA achieves state-of-the-art (SOTA) performance, particularly in accurately segmenting lesions characterized by spatial relational constraints.

Country of Origin
🇨🇳 China

Page Count
4 pages

Category
Computer Science:
CV and Pattern Recognition