Score: 0

An Architecture-Led Hybrid Report on Body Language Detection Project

Published: December 28, 2025 | arXiv ID: 2512.23028v1

By: Thomson Tong, Diba Darooneh

Potential Business Impact:

Lets computers understand videos and describe what's happening.

Business Areas:
Image Recognition Data and Analytics, Software

This report provides an architecture-led analysis of two modern vision-language models (VLMs), Qwen2.5-VL-7B-Instruct and Llama-4-Scout-17B-16E-Instruct, and explains how their architectural properties map to a practical video-to-artifact pipeline implemented in the BodyLanguageDetection repository [1]. The system samples video frames, prompts a VLM to detect visible people and generate pixel-space bounding boxes with prompt-conditioned attributes (emotion by default), validates output structure using a predefined schema, and optionally renders an annotated video. We first summarize the shared multimodal foundation (visual tokenization, Transformer attention, and instruction following), then describe each architecture at a level sufficient to justify engineering choices without speculative internals. Finally, we connect model behavior to system constraints: structured outputs can be syntactically valid while semantically incorrect, schema validation is structural (not geometric correctness), person identifiers are frame-local in the current prompting contract, and interactive single-frame analysis returns free-form text rather than schema-enforced JSON. These distinctions are critical for writing defensible claims, designing robust interfaces, and planning evaluation.

Page Count
11 pages

Category
Computer Science:
CV and Pattern Recognition