Multimodal Functional Maximum Correlation for Emotion Recognition
By: Deyang Zheng , Tianyi Zhang , Wenming Zheng and more
Emotional states manifest as coordinated yet heterogeneous physiological responses across central and autonomic systems, posing a fundamental challenge for multimodal representation learning in affective computing. Learning such joint dynamics is further complicated by the scarcity and subjectivity of affective annotations, which motivates the use of self-supervised learning (SSL). However, most existing SSL approaches rely on pairwise alignment objectives, which are insufficient to characterize dependencies among more than two modalities and fail to capture higher-order interactions arising from coordinated brain and autonomic responses. To address this limitation, we propose Multimodal Functional Maximum Correlation (MFMC), a principled SSL framework that maximizes higher-order multimodal dependence through a Dual Total Correlation (DTC) objective. By deriving a tight sandwich bound and optimizing it using a functional maximum correlation analysis (FMCA) based trace surrogate, MFMC captures joint multimodal interactions directly, without relying on pairwise contrastive losses. Experiments on three public affective computing benchmarks demonstrate that MFMC consistently achieves state-of-the-art or competitive performance under both subject-dependent and subject-independent evaluation protocols, highlighting its robustness to inter-subject variability. In particular, MFMC improves subject-dependent accuracy on CEAP-360VR from 78.9% to 86.8%, and subject-independent accuracy from 27.5% to 33.1% using the EDA signal alone. Moreover, MFMC remains within 0.8 percentage points of the best-performing method on the most challenging EEG subject-independent split of MAHNOB-HCI. Our code is available at https://github.com/DY9910/MFMC.
Similar Papers
ECMF: Enhanced Cross-Modal Fusion for Multimodal Emotion Recognition in MER-SEMI Challenge
CV and Pattern Recognition
Helps computers understand your feelings from faces, voices, words.
Unsupervised Pairwise Learning Optimization Framework for Cross-Corpus EEG-Based Emotion Recognition Based on Prototype Representation
Signal Processing
Helps computers understand emotions from brain signals.
Calibrating Multimodal Consensus for Emotion Recognition
CV and Pattern Recognition
Helps computers understand feelings from words and faces.