Graph Neural Networks with Transformer Fusion of Brain Connectivity Dynamics and Tabular Data for Forecasting Future Tobacco Use
By: Runzhi Zhou, Xi Luo
Integrating non-Euclidean brain imaging data with Euclidean tabular data, such as clinical and demographic information, poses a substantial challenge for medical imaging analysis, particularly in forecasting future outcomes. While machine learning and deep learning techniques have been applied successfully to cross-sectional classification and prediction tasks, effectively forecasting outcomes in longitudinal imaging studies remains challenging. To address this challenge, we introduce a time-aware graph neural network model with transformer fusion (GNN-TF). This model flexibly integrates both tabular data and dynamic brain connectivity data, leveraging the temporal order of these variables within a coherent framework. By incorporating non-Euclidean and Euclidean sources of information from a longitudinal resting-state fMRI dataset from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA), the GNN-TF enables a comprehensive analysis that captures critical aspects of longitudinal imaging data. Comparative analyses against a variety of established machine learning and deep learning models demonstrate that GNN-TF outperforms these state-of-the-art methods, delivering superior predictive accuracy for predicting future tobacco usage. The end-to-end, time-aware transformer fusion structure of the proposed GNN-TF model successfully integrates multiple data modalities and leverages temporal dynamics, making it a valuable analytic tool for functional brain imaging studies focused on clinical outcome prediction.
Similar Papers
Predicting Cognition from fMRI:A Comparative Study of Graph, Transformer, and Kernel Models Across Task and Rest Conditions
Machine Learning (CS)
Reads minds by looking at brain scans.
A Cloud-Based Spatio-Temporal GNN-Transformer Hybrid Model for Traffic Flow Forecasting with External Feature Integration
Distributed, Parallel, and Cluster Computing
Predicts traffic jams to make driving smoother.
Self-supervised Graph Transformer with Contrastive Learning for Brain Connectivity Analysis towards Improving Autism Detection
Machine Learning (CS)
Finds autism by looking at brain connections.