Score: 0

LogosQ: A High-Performance and Type-Safe Quantum Computing Library in Rust

Published: December 29, 2025 | arXiv ID: 2512.23183v1

By: Shiwen An, Jiayi Wang, Konstantinos Slavakis

Developing robust and high performance quantum software is challenging due to the dynamic nature of existing Python-based frameworks, which often suffer from runtime errors and scalability bottlenecks. In this work, we present LogosQ, a high performance backend agnostic quantum computing library implemented in Rust that enforces correctness through compile time type safety. Unlike existing tools, LogosQ leverages Rust static analysis to eliminate entire classes of runtime errors, particularly in parameter-shift rule gradient computations for variational algorithms. We introduce novel optimization techniques, including direct state-vector manipulation, adaptive parallel processing, and an FFT optimized Quantum Fourier Transform, which collectively deliver speedups of up to 900 times for state preparation (QFT) and 2 to 5 times for variational workloads over Python frameworks (PennyLane, Qiskit), 6 to 22 times over Julia implementations (Yao), and competitive performance with Q sharp. Beyond performance, we validate numerical stability through variational quantum eigensolver (VQE) experiments on molecular hydrogen and XYZ Heisenberg models, achieving chemical accuracy even in edge cases where other libraries fail. By combining the safety of systems programming with advanced circuit optimization, LogosQ establishes a new standard for reliable and efficient quantum simulation.

Category
Physics:
Quantum Physics