Score: 0

A Simple, Optimal and Efficient Algorithm for Online Exp-Concave Optimization

Published: December 29, 2025 | arXiv ID: 2512.23190v1

By: Yi-Han Wang, Peng Zhao, Zhi-Hua Zhou

Online eXp-concave Optimization (OXO) is a fundamental problem in online learning. The standard algorithm, Online Newton Step (ONS), balances statistical optimality and computational practicality, guaranteeing an optimal regret of $O(d \log T)$, where $d$ is the dimension and $T$ is the time horizon. ONS faces a computational bottleneck due to the Mahalanobis projections at each round. This step costs $Ω(d^ω)$ arithmetic operations for bounded domains, even for the unit ball, where $ω\in (2,3]$ is the matrix-multiplication exponent. As a result, the total runtime can reach $\tilde{O}(d^ωT)$, particularly when iterates frequently oscillate near the domain boundary. For Stochastic eXp-concave Optimization (SXO), computational cost is also a challenge. Deploying ONS with online-to-batch conversion for SXO requires $T = \tilde{O}(d/ε)$ rounds to achieve an excess risk of $ε$, and thereby necessitates an $\tilde{O}(d^{ω+1}/ε)$ runtime. A COLT'13 open problem posed by Koren [2013] asks for an SXO algorithm with runtime less than $\tilde{O}(d^{ω+1}/ε)$. This paper proposes a simple variant of ONS, LightONS, which reduces the total runtime to $O(d^2 T + d^ω\sqrt{T \log T})$ while preserving the optimal $O(d \log T)$ regret. LightONS implies an SXO method with runtime $\tilde{O}(d^3/ε)$, thereby answering the open problem. Importantly, LightONS preserves the elegant structure of ONS by leveraging domain-conversion techniques from parameter-free online learning to introduce a hysteresis mechanism that delays expensive Mahalanobis projections until necessary. This design enables LightONS to serve as an efficient plug-in replacement of ONS in broader scenarios, even beyond regret minimization, including gradient-norm adaptive regret, parametric stochastic bandits, and memory-efficient online learning.

Category
Computer Science:
Machine Learning (CS)