Score: 0

Dynamic Channel Knowledge Map Construction in MIMO-OFDM Systems

Published: December 29, 2025 | arXiv ID: 2512.23470v1

By: Wenjun Jiang , Xiaojun Yuan , Chenchen Liu and more

Channel knowledge map (CKM) is a promising paradigm for environment-aware communications by establishing a deterministic mapping between physical locations and channel parameters. Existing CKM construction methods focus on quasi-static propagation environment. This paper develops a dynamic CKM construction method for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. We establish a dynamic channel model that captures the coexistence of quasi-static and dynamic scatterers, as well as the impacts of antenna rotation and synchronization errors. Based on this model, we formulate the problem of dynamic CKM construction within a Bayesian inference framework and design a two-stage approximate Bayesian inference algorithm. In stage I, a high-performance algorithm is developed to jointly infer quasi-static channel parameters and calibrate synchronization errors from historical measurements. In stage II, by leveraging the quasi-static parameters as informative priors, a low-complexity algorithm is designed to estimate dynamic parameters from limited real-time measurements. Simulation results validate the superiority of the proposed method and demonstrate its effectiveness in enabling low-overhead, high-performance channel estimation in dynamic environments.

Category
Computer Science:
Information Theory