ThinkGen: Generalized Thinking for Visual Generation
By: Siyu Jiao , Yiheng Lin , Yujie Zhong and more
Potential Business Impact:
Makes AI create better pictures from words.
Recent progress in Multimodal Large Language Models (MLLMs) demonstrates that Chain-of-Thought (CoT) reasoning enables systematic solutions to complex understanding tasks. However, its extension to generation tasks remains nascent and limited by scenario-specific mechanisms that hinder generalization and adaptation. In this work, we present ThinkGen, the first think-driven visual generation framework that explicitly leverages MLLM's CoT reasoning in various generation scenarios. ThinkGen employs a decoupled architecture comprising a pretrained MLLM and a Diffusion Transformer (DiT), wherein the MLLM generates tailored instructions based on user intent, and DiT produces high-quality images guided by these instructions. We further propose a separable GRPO-based training paradigm (SepGRPO), alternating reinforcement learning between the MLLM and DiT modules. This flexible design enables joint training across diverse datasets, facilitating effective CoT reasoning for a wide range of generative scenarios. Extensive experiments demonstrate that ThinkGen achieves robust, state-of-the-art performance across multiple generation benchmarks. Code is available: https://github.com/jiaosiyuu/ThinkGen
Similar Papers
From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
Computation and Language
Helps AI "think step-by-step" to solve harder problems.
From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
Computation and Language
Helps AI "think" step-by-step to solve harder problems.
ImageGen-CoT: Enhancing Text-to-Image In-context Learning with Chain-of-Thought Reasoning
CV and Pattern Recognition
Makes AI draw better pictures from descriptions.