Random Controlled Differential Equations
By: Francesco Piatti, Thomas Cass, William F. Turner
We introduce a training-efficient framework for time-series learning that combines random features with controlled differential equations (CDEs). In this approach, large randomly parameterized CDEs act as continuous-time reservoirs, mapping input paths to rich representations. Only a linear readout layer is trained, resulting in fast, scalable models with strong inductive bias. Building on this foundation, we propose two variants: (i) Random Fourier CDEs (RF-CDEs): these lift the input signal using random Fourier features prior to the dynamics, providing a kernel-free approximation of RBF-enhanced sequence models; (ii) Random Rough DEs (R-RDEs): these operate directly on rough-path inputs via a log-ODE discretization, using log-signatures to capture higher-order temporal interactions while remaining stable and efficient. We prove that in the infinite-width limit, these model induces the RBF-lifted signature kernel and the rough signature kernel, respectively, offering a unified perspective on random-feature reservoirs, continuous-time deep architectures, and path-signature theory. We evaluate both models across a range of time-series benchmarks, demonstrating competitive or state-of-the-art performance. These methods provide a practical alternative to explicit signature computations, retaining their inductive bias while benefiting from the efficiency of random features.
Similar Papers
Rough Path Signatures: Learning Neural RDEs for Portfolio Optimization
Mathematical Finance
Helps computers make better money decisions.
Rough Path Signatures: Learning Neural RDEs for Portfolio Optimization
Mathematical Finance
Helps computers make better money choices.
Time Resolution Independent Operator Learning
Computational Engineering, Finance, and Science
Solves tough math problems instantly from messy data.