Score: 0

Improved Bounds for Private and Robust Alignment

Published: December 29, 2025 | arXiv ID: 2512.23816v1

By: Wenqian Weng, Yi He, Xingyu Zhou

In this paper, we study the private and robust alignment of language models from a theoretical perspective by establishing upper bounds on the suboptimality gap in both offline and online settings. We consider preference labels subject to privacy constraints and/or adversarial corruption, and analyze two distinct interplays between them: privacy-first and corruption-first. For the privacy-only setting, we show that log loss with an MLE-style algorithm achieves near-optimal rates, in contrast to conventional wisdom. For the joint privacy-and-corruption setting, we first demonstrate that existing offline algorithms in fact provide stronger guarantees -- simultaneously in terms of corruption level and privacy parameters -- than previously known, which further yields improved bounds in the corruption-only regime. In addition, we also present the first set of results for private and robust online alignment. Our results are enabled by new uniform convergence guarantees for log loss and square loss under privacy and corruption, which we believe have broad applicability across learning theory and statistics.

Category
Computer Science:
Machine Learning (CS)