Quantum Error Mitigation with Attention Graph Transformers for Burgers Equation Solvers on NISQ Hardware
By: Seyed Mohamad Ali Tousi , Adib Bazgir , Yuwen Zhang and more
We present a hybrid quantum-classical framework augmented with learned error mitigation for solving the viscous Burgers equation on noisy intermediate-scale quantum (NISQ) hardware. Using the Cole-Hopf transformation, the nonlinear Burgers equation is mapped to a diffusion equation, discretized on uniform grids, and encoded into a quantum state whose time evolution is approximated via Trotterized nearest-neighbor circuits implemented in Qiskit. Quantum simulations are executed on noisy Aer backends and IBM superconducting quantum devices and are benchmarked against high-accuracy classical solutions obtained using a Krylov-based solver applied to the corresponding discretized Hamiltonian. From measured quantum amplitudes, we reconstruct the velocity field and evaluate physical and numerical diagnostics, including the L2 error, shock location, and dissipation rate, both with and without zero-noise extrapolation (ZNE). To enable data-driven error mitigation, we construct a large parametric dataset by sweeping viscosity, time step, grid resolution, and boundary conditions, producing matched tuples of noisy, ZNE-corrected, hardware, and classical solutions together with detailed circuit metadata. Leveraging this dataset, we train an attention-based graph neural network that incorporates circuit structure, light-cone information, global circuit parameters, and noisy quantum outputs to predict error-mitigated solutions. Across a wide range of parameters, the learned model consistently reduces the discrepancy between quantum and classical solutions beyond what is achieved by ZNE alone. We discuss extensions of this approach to higher-dimensional Burgers systems and more general quantum partial differential equation solvers, highlighting learned error mitigation as a promising complement to physics-based noise reduction techniques on NISQ devices.
Similar Papers
Provably Efficient Quantum Algorithms for Solving Nonlinear Differential Equations Using Multiple Bosonic Modes Coupled with Qubits
Quantum Physics
Solves hard math problems faster with quantum physics.
A Graph-Based Forensic Framework for Inferring Hardware Noise of Cloud Quantum Backend
Quantum Physics
Checks if quantum computers cheat with their errors.
Bridging quantum and classical computing for partial differential equations through multifidelity machine learning
Machine Learning (CS)
Fixes slow, blurry quantum computer science answers.