Score: 0

Hierarchical Quasi-cyclic Codes from Reed-Solomon and Polynomial Evaluation Codes

Published: December 29, 2025 | arXiv ID: 2512.23872v1

By: Emily McMillon, Kathryn Haymaker

We introduce the first example of algebraically constructed hierarchical quasi-cyclic codes. These codes are built from Reed-Solomon codes using a 1964 construction of superimposed codes by Kautz and Singleton. We show both the number of levels in the hierarchy and the index of these Reed-Solomon derived codes are determined by the field size. We show that this property also holds for certain additional classes of polynomial evaluation codes. We provide explicit code parameters and properties as well as some additional bounds on parameters such as rank and distance. In particular, starting with Reed-Solomon codes of dimension $k=2$ yields hierarchical quasi-cyclic codes with Tanner graphs of girth 6. We present a table of small code parameters and note that some of these codes meet the best known minimum distance for binary codes, with the additional hierarchical quasi-cyclic structure. We draw connections to similar constructions in the literature, but importantly, while existing literature on related codes is largely simulation-based, we present a novel algebraic approach to determining new bounds on parameters of these codes.

Category
Computer Science:
Information Theory