Quantitative Understanding of PDF Fits and their Uncertainties
By: Amedeo Chiefa, Luigi Del Debbio, Richard Kenway
Parton Distribution Functions (PDFs) play a central role in describing experimental data at colliders and provide insight into the structure of nucleons. As the LHC enters an era of high-precision measurements, a robust PDF determination with a reliable uncertainty quantification has become mandatory in order to match the experimental precision. The NNPDF collaboration has pioneered the use of Machine Learning (ML) techniques for PDF determinations, using Neural Networks (NNs) to parametrise the unknown PDFs in a flexible and unbiased way. The NNs are then trained on experimental data by means of stochastic gradient descent algorithms. The statistical robustness of the results is validated by extensive closure tests using synthetic data. In this work, we develop a theoretical framework based on the Neural Tangent Kernel (NTK) to analyse the training dynamics of neural networks. This approach allows us to derive, under precise assumptions, an analytical description of the neural network evolution during training, enabling a quantitative understanding of the training process. Having an analytical handle on the training dynamics allows us to clarify the role of the NN architecture and the impact of the experimental data in a transparent way. Similarly, we are able to describe the evolution of the covariance of the NN output during training, providing a quantitative description of how uncertainties are propagated from the data to the fitted function. While our results are not a substitute for PDF fitting, they do provide a powerful diagnostic tool to assess the robustness of current fitting methodologies. Beyond its relevance for particle physics phenomenology, our analysis of PDF determinations provides a testbed to apply theoretical ideas about the learning process developed in the ML community.
Similar Papers
A Quantum Tensor Network-Based Viewpoint for Modeling and Analysis of Time Series Data
Machine Learning (CS)
Makes smart computers understand their mistakes.
Simulation-based inference for Precision Neutrino Physics through Neural Monte Carlo tuning
Data Analysis, Statistics and Probability
Helps scientists better understand tiny particles.
Uncertainty Quantification From Scaling Laws in Deep Neural Networks
Machine Learning (CS)
Makes AI guesses more reliable for science.