Score: 0

PartMotionEdit: Fine-Grained Text-Driven 3D Human Motion Editing via Part-Level Modulation

Published: December 30, 2025 | arXiv ID: 2512.24200v1

By: Yujie Yang , Zhichao Zhang , Jiazhou Chen and more

Existing text-driven 3D human motion editing methods have demonstrated significant progress, but are still difficult to precisely control over detailed, part-specific motions due to their global modeling nature. In this paper, we propose PartMotionEdit, a novel fine-grained motion editing framework that operates via part-level semantic modulation. The core of PartMotionEdit is a Part-aware Motion Modulation (PMM) module, which builds upon a predefined five-part body decomposition. PMM dynamically predicts time-varying modulation weights for each body part, enabling precise and interpretable editing of local motions. To guide the training of PMM, we also introduce a part-level similarity curve supervision mechanism enhanced with dual-layer normalization. This mechanism assists PMM in learning semantically consistent and editable distributions across all body parts. Furthermore, we design a Bidirectional Motion Interaction (BMI) module. It leverages bidirectional cross-modal attention to achieve more accurate semantic alignment between textual instructions and motion semantics. Extensive quantitative and qualitative evaluations on a well-known benchmark demonstrate that PartMotionEdit outperforms the state-of-the-art methods.

Category
Computer Science:
Graphics