Physically-Grounded Manifold Projection with Foundation Priors for Metal Artifact Reduction in Dental CBCT
By: Zhi Li , Yaqi Wang , Bingtao Ma and more
Metal artifacts in Dental CBCT severely obscure anatomical structures, hindering diagnosis. Current deep learning for Metal Artifact Reduction (MAR) faces limitations: supervised methods suffer from spectral blurring due to "regression-to-the-mean", while unsupervised ones risk structural hallucinations. Denoising Diffusion Models (DDPMs) offer realism but rely on slow, stochastic iterative sampling, unsuitable for clinical use. To resolve this, we propose the Physically-Grounded Manifold Projection (PGMP) framework. First, our Anatomically-Adaptive Physics Simulation (AAPS) pipeline synthesizes high-fidelity training pairs via Monte Carlo spectral modeling and patient-specific digital twins, bridging the synthetic-to-real gap. Second, our DMP-Former adapts the Direct x-Prediction paradigm, reformulating restoration as a deterministic manifold projection to recover clean anatomy in a single forward pass, eliminating stochastic sampling. Finally, a Semantic-Structural Alignment (SSA) module anchors the solution using priors from medical foundation models (MedDINOv3), ensuring clinical plausibility. Experiments on synthetic and multi-center clinical datasets show PGMP outperforms state-of-the-art methods on unseen anatomy, setting new benchmarks in efficiency and diagnostic reliability. Code and data: https://github.com/ricoleehduu/PGMP
Similar Papers
Phase-fraction guided denoising diffusion model for augmenting multiphase steel microstructure segmentation via micrograph image-mask pair synthesis
CV and Pattern Recognition
Generates fake metal images to boost AI accuracy
Unified and Semantically Grounded Domain Adaptation for Medical Image Segmentation
CV and Pattern Recognition
Helps doctors see body parts in scans better.
Unified and Semantically Grounded Domain Adaptation for Medical Image Segmentation
CV and Pattern Recognition
Helps doctors see body parts in scans better.