Score: 0

Lifting Vision: Ground to Aerial Localization with Reasoning Guided Planning

Published: December 30, 2025 | arXiv ID: 2512.24404v1

By: Soham Pahari, M. Srinivas

Multimodal intelligence development recently show strong progress in visual understanding and high level reasoning. Though, most reasoning system still reply on textual information as the main medium for inference. This limit their effectiveness in spatial tasks such as visual navigation and geo-localization. This work discuss about the potential scope of this field and eventually propose an idea visual reasoning paradigm Geo-Consistent Visual Planning, our introduced framework called Visual Reasoning for Localization, or ViReLoc, which performs planning and localization using only visual representations. The proposed framework learns spatial dependencies and geometric relations that text based reasoning often suffer to understand. By encoding step by step inference in the visual domain and optimizing with reinforcement based objectives, ViReLoc plans routes between two given ground images. The system also integrates contrastive learning and adaptive feature interaction to align cross view perspectives and reduce viewpoint differences. Experiments across diverse navigation and localization scenarios show consistent improvements in spatial reasoning accuracy and cross view retrieval performance. These results establish visual reasoning as a strong complementary approach for navigation and localization, and show that such tasks can be performed without real time global positioning system data, leading to more secure navigation solutions.

Category
Computer Science:
Machine Learning (CS)