Virasoro Symmetry in Neural Network Field Theories
By: Brandon Robinson
Neural Network Field Theories (NN-FTs) can realize global conformal symmetries via embedding space architectures. These models describe Generalized Free Fields (GFFs) in the infinite width limit. However, they typically lack a local stress-energy tensor satisfying conformal Ward identities. This presents an obstruction to realizing infinite-dimensional, local conformal symmetry typifying 2d Conformal Field Theories (CFTs). We present the first construction of an NN-FT that encodes the full Virasoro symmetry of a 2d CFT. We formulate a neural free boson theory with a local stress tensor $T(z)$ by properly choosing the architecture and prior distribution of network parameters. We verify the analytical results through numerical simulation; computing the central charge and the scaling dimensions of vertex operators. We then construct an NN realization of a Majorana Fermion and an $\mathcal{N}=(1,1)$ scalar multiplet, which then enables an extension of the formalism to include super-Virasoro symmetry. Finally, we extend the framework by constructing boundary NN-FTs that preserve (super-)conformal symmetry via the method of images.
Similar Papers
Conformal Defects in Neural Network Field Theories
High Energy Physics - Theory
Builds math models that understand special rules.
Fermions and Supersymmetry in Neural Network Field Theories
High Energy Physics - Theory
Builds new computer models for physics.
Viability of perturbative expansion for quantum field theories on neurons
High Energy Physics - Theory
Helps computers understand tiny particle rules.