Score: 0

Safe in the Future, Dangerous in the Past: Dissecting Temporal and Linguistic Vulnerabilities in LLMs

Published: December 31, 2025 | arXiv ID: 2512.24556v1

By: Muhammad Abdullahi Said, Muhammad Sammani Sani

As Large Language Models (LLMs) integrate into critical global infrastructure, the assumption that safety alignment transfers zero-shot from English to other languages remains a dangerous blind spot. This study presents a systematic audit of three state of the art models (GPT-5.1, Gemini 3 Pro, and Claude 4.5 Opus) using HausaSafety, a novel adversarial dataset grounded in West African threat scenarios (e.g., Yahoo-Yahoo fraud, Dane gun manufacturing). Employing a 2 x 4 factorial design across 1,440 evaluations, we tested the non-linear interaction between language (English vs. Hausa) and temporal framing. Our results challenge the prevailing multilingual safety gap narrative. Instead of a simple degradation in low-resource settings, we identified a mechanism of Complex Interference where safety is determined by the intersection of variables. While models exhibited a Reverse Linguistic with Claude 4.5 Opus proving significantly safer in Hausa (45.0%) than in English (36.7%) due to uncertainty-driven refusal they suffered catastrophic failures in temporal reasoning. We report a profound Temporal Asymmetry, where past-tense framing bypassed defenses (15.6% safe) while future-tense scenarios triggered hyper-conservative refusals (57.2% safe). The magnitude of this volatility is illustrated by a 9.2x disparity between the safest and most vulnerable configurations, proving that safety is not a fixed property but a context-dependent state. We conclude that current models rely on superficial heuristics rather than robust semantic understanding, creating Safety Pockets that leave Global South users exposed to localized harms. We propose Invariant Alignment as a necessary paradigm shift to ensure safety stability across linguistic and temporal shifts.

Category
Computer Science:
Computation and Language