A Uniform Pilot and Data Payload Optimization Framework for OTFS-Based ISAC
By: Borui Du , Yumeng Zhang , Christos Masouros and more
The orthogonal time frequency space (OTFS) signal is considered a promising solution for high-mobility wireless environments. It manages Doppler effects by utilizing delay-Doppler (DD) domain processing. However, the relatively long OTFS frame duration could introduce considerable sensing or communication latency when radar and communication are performed separately. By operating in a dual-functional radar and communication (DFRC) mode, the OTFS system performs sensing and data transmission simultaneously, thereby reducing the resulting latency. Nevertheless, the optimal OTFS DFRC signal strategy remains insufficiently explored. This paper investigates the optimal signal design for OTFS DFRC systems, focusing on pilot symbol design and data symbol power allocation. Specifically, we derive a channel capacity lower bound metric for communication that considers channel estimation errors in OTFS. For sensing, we derive an integrated sidelobe level (ISL), accounting for the randomness of the data symbols alongside the deterministic pilot symbols. Leveraging the above metrics, we formulate an optimization problem that balances radar and communication performance, and then solve it using an alternating optimization framework. We validate the proposed signal through numerical analysis and Monte Carlo simulations. Our analysis shows that OTFS DFRC enforces a deterministic pilot signal that is characterized by a concentrated peak in the DD domain, which furnishes a common structure in the DD domain facilitating sensing and channel estimation, with data multiplexed in other DD grids, thereby unifying sensing and communication within a single OTFS signal. Compared with conventional OTFS signals, the proposed OTFS DFRC signal expands the achievable sensing-communication performance region, delivering at least a 9.45 dB ISL suppression for sensing and a 4.82 dB SINR ratio gain for communication.
Similar Papers
Signal Design for OTFS Dual-Functional Radar and Communications with Imperfect CSI
Signal Processing
Improves radar and phone signals at once.
Pilot design, channel estimation, and target detection for integrated sensing and communication with OTFS
Information Theory
Lets phones see and talk at once.
RIS-Empowered OTFS Modulation With Faster-than-Nyquist Signaling in High-Mobility Wireless Communications
Information Theory
Makes wireless signals faster and more reliable.