Score: 1

Hybrid Motion Planning with Deep Reinforcement Learning for Mobile Robot Navigation

Published: December 31, 2025 | arXiv ID: 2512.24651v1

By: Yury Kolomeytsev, Dmitry Golembiovsky

Potential Business Impact:

Robots navigate safely around people and obstacles.

Business Areas:
Autonomous Vehicles Transportation

Autonomous mobile robots operating in complex, dynamic environments face the dual challenge of navigating large-scale, structurally diverse spaces with static obstacles while safely interacting with various moving agents. Traditional graph-based planners excel at long-range pathfinding but lack reactivity, while Deep Reinforcement Learning (DRL) methods demonstrate strong collision avoidance but often fail to reach distant goals due to a lack of global context. We propose Hybrid Motion Planning with Deep Reinforcement Learning (HMP-DRL), a hybrid framework that bridges this gap. Our approach utilizes a graph-based global planner to generate a path, which is integrated into a local DRL policy via a sequence of checkpoints encoded in both the state space and reward function. To ensure social compliance, the local planner employs an entity-aware reward structure that dynamically adjusts safety margins and penalties based on the semantic type of surrounding agents. We validate the proposed method through extensive testing in a realistic simulation environment derived from real-world map data. Comprehensive experiments demonstrate that HMP-DRL consistently outperforms other methods, including state-of-the-art approaches, in terms of key metrics of robot navigation: success rate, collision rate, and time to reach the goal. Overall, these findings confirm that integrating long-term path guidance with semantically-aware local control significantly enhances both the safety and reliability of autonomous navigation in complex human-centric settings.

Page Count
22 pages

Category
Computer Science:
Robotics