Score: 0

Compute-Accuracy Pareto Frontiers for Open-Source Reasoning Large Language Models

Published: December 31, 2025 | arXiv ID: 2512.24776v1

By: Ákos Prucs , Márton Csutora , Mátyás Antal and more

Large Language Models (LLMs) are demonstrating rapid improvements on complex reasoning benchmarks, particularly when allowed to utilize intermediate reasoning steps before converging on a final solution. However, current literature often overlooks the significant computational burden associated with generating long reasoning sequences. For industrial applications, model selection depends not only on raw accuracy but also on resource constraints and inference costs. In this work, we conduct a test-time-compute aware evaluation of both contemporary and older open-source LLMs, mapping their Pareto frontiers across math- and reasoning-intensive benchmarks. Our findings identify the Mixture of Experts (MoE) architecture as a strong candidate to balance performance and efficiency in our evaluation setting. Furthermore, we trace the trajectory of Pareto efficiency over time to derive an emergent trend regarding accuracy gain per unit of compute. Finally, we demonstrate that there is a saturation point for inference-time compute. Beyond a certain threshold, accuracy gains diminish, indicating that while extended reasoning capabilities are beneficial, they cannot overcome intrinsic model limitations regarding specific complexities.

Category
Computer Science:
Computation and Language