Score: 0

Spectral Graph Neural Networks for Cognitive Task Classification in fMRI Connectomes

Published: December 31, 2025 | arXiv ID: 2512.24901v1

By: Debasis Maji, Arghya Banerjee, Debaditya Barman

Cognitive task classification using machine learning plays a central role in decoding brain states from neuroimaging data. By integrating machine learning with brain network analysis, complex connectivity patterns can be extracted from functional magnetic resonance imaging connectomes. This process transforms raw blood-oxygen-level-dependent (BOLD) signals into interpretable representations of cognitive processes. Graph neural networks (GNNs) further advance this paradigm by modeling brain regions as nodes and functional connections as edges, capturing topological dependencies and multi-scale interactions that are often missed by conventional approaches. Our proposed SpectralBrainGNN model, a spectral convolution framework based on graph Fourier transforms (GFT) computed via normalized Laplacian eigendecomposition. Experiments on the Human Connectome Project-Task (HCPTask) dataset demonstrate the effectiveness of the proposed approach, achieving a classification accuracy of 96.25\%. The implementation is publicly available at https://github.com/gnnplayground/SpectralBrainGNN to support reproducibility and future research.

Category
Computer Science:
Machine Learning (CS)