Score: 0

Reinforcement learning with timed constraints for robotics motion planning

Published: December 31, 2025 | arXiv ID: 2601.00087v1

By: Zhaoan Wang , Junchao Li , Mahdi Mohammad and more

Potential Business Impact:

Robots learn to finish tasks on time, even when things change.

Business Areas:
Industrial Automation Manufacturing, Science and Engineering

Robotic systems operating in dynamic and uncertain environments increasingly require planners that satisfy complex task sequences while adhering to strict temporal constraints. Metric Interval Temporal Logic (MITL) offers a formal and expressive framework for specifying such time-bounded requirements; however, integrating MITL with reinforcement learning (RL) remains challenging due to stochastic dynamics and partial observability. This paper presents a unified automata-based RL framework for synthesizing policies in both Markov Decision Processes (MDPs) and Partially Observable Markov Decision Processes (POMDPs) under MITL specifications. MITL formulas are translated into Timed Limit-Deterministic Generalized Büchi Automata (Timed-LDGBA) and synchronized with the underlying decision process to construct product timed models suitable for Q-learning. A simple yet expressive reward structure enforces temporal correctness while allowing additional performance objectives. The approach is validated in three simulation studies: a $5 \times 5$ grid-world formulated as an MDP, a $10 \times 10$ grid-world formulated as a POMDP, and an office-like service-robot scenario. Results demonstrate that the proposed framework consistently learns policies that satisfy strict time-bounded requirements under stochastic transitions, scales to larger state spaces, and remains effective in partially observable environments, highlighting its potential for reliable robotic planning in time-critical and uncertain settings.

Page Count
24 pages

Category
Computer Science:
Robotics