S2M-Net: Spectral-Spatial Mixing for Medical Image Segmentation with Morphology-Aware Adaptive Loss
By: Md. Sanaullah Chowdhury Lameya Sabrin
Potential Business Impact:
Helps doctors find diseases in scans faster.
Medical image segmentation requires balancing local precision for boundary-critical clinical applications, global context for anatomical coherence, and computational efficiency for deployment on limited data and hardware a trilemma that existing architectures fail to resolve. Although convolutional networks provide local precision at $\mathcal{O}(n)$ cost but limited receptive fields, vision transformers achieve global context through $\mathcal{O}(n^2)$ self-attention at prohibitive computational expense, causing overfitting on small clinical datasets. We propose S2M-Net, a 4.7M-parameter architecture that achieves $\mathcal{O}(HW \log HW)$ global context through two synergistic innovations: (i) Spectral-Selective Token Mixer (SSTM), which exploits the spectral concentration of medical images via truncated 2D FFT with learnable frequency filtering and content-gated spatial projection, avoiding quadratic attention cost while maintaining global receptive fields; and (ii) Morphology-Aware Adaptive Segmentation Loss (MASL), which automatically analyzes structure characteristics (compactness, tubularity, irregularity, scale) to modulate five complementary loss components through constrained learnable weights, eliminating manual per-dataset tuning. Comprehensive evaluation in 16 medical imaging datasets that span 8 modalities demonstrates state-of-the-art performance: 96.12\% Dice on polyp segmentation, 83.77\% on surgical instruments (+17.85\% over the prior art) and 80.90\% on brain tumors, with consistent 3-18\% improvements over specialized baselines while using 3.5--6$\times$ fewer parameters than transformer-based methods.
Similar Papers
Hyperspectral Image Classification using Spectral-Spatial Mixer Network
CV and Pattern Recognition
Helps computers identify things in pictures better.
MedLiteNet: Lightweight Hybrid Medical Image Segmentation Model
CV and Pattern Recognition
Helps doctors find skin cancer faster.
Bridging spatial awareness and global context in medical image segmentation
CV and Pattern Recognition
Helps doctors see tiny details in medical scans.